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Società Italiana di Fisica
Springer-Verlag 1999
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Abstract. It is shown that multifractal properties of some random and disordered systems can be simulated
using thermodynamics of a generalized ideal monoatomic gas in a fractal phase space.

PACS. 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion

1 Introduction

Constant specific heat approximation turns out to be ap-
plicable to multifractal thermodynamics [1] of some ran-
dom and disordered systems [2]. It is noted in [2] that for
some random systems (such as diffusion-limited aggrega-
tion and turbulent diffusion) the multifractal specific heat
c ∝ d, where d is the Euclidean dimension of the embed-
ding space. In this paper we present some additional ex-
amples of this phenomenon (damage spreading in the Ising
model and a mesoscopic system with long-range disorder
at Anderson transition) and we suggest a generalization of
thermodynamics of ideal monoatomic gas on fractal phase
space as a possible model which can be used for its ex-
planation. The ben-Avraham family of fractal gaskets [3]
is used as a support of the fractal (“cell”) phase space in
this model.

2 Multifractal specific heat in fractal phase
space

In the ordinary thermodynamics a simplest system with
constant specific heat is the classical ideal monoatomic
gas. For this gas, the specific heat c = d/2, where d
is the Euclidean dimension of the embedding space [4].
Generally speaking, in the case of multifractal (virtual)
thermodynamics [1] one can consider also fractal phase
space. Indeed, if one considers quasi-classical motion of
gas molecules, one can use the distribution of molecules
in phase space instead of the distribution over quantum
states. Since we shall consider only the translational mo-
tion of molecules (which are not in external field) we can
use the quasi-classical approach. At this approach the sta-
tistical weight of the macroscopic state of subsystem: ∆G
(the number of states corresponding to the interval ∆E
of the energy in quantum theory) can be related to the
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volume element of phase space: ∆p∆q, representing the
size of region of phase space in which the subsystem will
almost always be found (p are the momenta and q are the
coordinates). If one supposes that a cell of volume (2πh)s

(where s is the number of degrees of freedom of the system
and h is the Planck constant) corresponds in phase space
to each quantum state, then in the quasi-classical case [4]

∆G =
∆p∆q

(2πh)s

and entropy of the subsystem is

S = log
∆p∆q

(2πh)s
·

If the “cell”-constructed phase space is fractal with frac-
tal dimension 2D, then the scaling transformation of the
moments and coordinates: p→ λP and q→ λQ leads to
the following transformation of the volume element of the
phase space ∆p∆q → λ2D∆P∆Q. It is well known that
the quantum states distributions can exhibit fractal prop-
erties. The quasi-classical approach allows to introduce an
ideal gas with fractal properties by a natural way, while
it seems to be rather difficult to do from dynamical (clas-
sical) point of view. We consider here the simplest case
of monoatomic gas with energy of molecule ε(p), which is
the kinetic energy of the molecule. In this case ε(p) is a
quadratic function of the momenta p, and the free energy
of the classical (quasi-classical) gas

F = −NT log
A

N

∫
e−ε(p)/Tdp,

where N is the number of molecules in the gas, T is its
temperature, and A is some constant.

In order to find the dependence on temperature of inte-
gral in this formula we substitute p→ T 1/2P. Since ε(p)
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is quadratic function of the momenta p, ε(p) = Tε(P) and
T cancels in the exponent of the integrand. The transfor-
mation of the dp gives a factor TD/2, which can be taken
outside the integral. Therefore, we obtain

F = −NT log[
B

N
TD/2]

(where B is some constant) and, consequently,

c =
D

2

for this virtual gas.
Let us use the ben-Avraham family of fractal gas-

kets [3] as a support of the fractal (“cell”-constructed)
phase space. This family of fractal gaskets can be con-
structed by the following way [3]. Take a d-dimensional
hypercube of side b = 2n and subdivide it into 2nd cubi-
cles. Remove cubicles homogeneously, not randomly, until
you are left with 2md cubicles. Repeat the procedure with
each remaining cubicles iteratively until the quasi-classical
cell size. The fractal dimension of resulting object is

D =
log 2md

log 2n
=
m

n
d. (1)

Then if we substitute the ben-Avraham’s fractal dimen-
sion (1) into representation of the multifractal specific heat
c = D/2 we obtain

c =
m

2n
d. (2)

One can see that specific heat c ∝ d in this model. There-
fore the generalized ideal gas can be used to simulate mul-
tifractal properties of the random systems for which the
multifractal specific heat c ∝ d. Moreover, choosing differ-
ent m and n one can approximate any observed value of
c. Therefore, this model can be used to approximate mul-
tifractal spectrum of any system with the constant multi-
fractal specific heat c ∝ d. The integer parameters m and
n could be also used to classify these processes.

3 The examples

A. Damage spreading in the Ising model attracts constant
attention in the last decade (see [5] for a review and [6] for
a very recent advance). A search for multifractality in the
Ising model was performed in paper [7] using the “heat
bath” transition probability for Monte-Carlo simulations
of the damage spreading. An equilibrium configurations
was simulated in [7] and a clone made of the system. The
central site was kept permanently up in the system but
down in the clone: this site is permanently damaged. The
authors of [7] monitor how the damage propagates with
time. Whenever an update is performed it is done syn-
chronously for site i of the system and the clone and same
random number is used for the update. The use of the
same random number ensures that both the system and

the clone interact with the thermal reservoir in the same
manner. For finite times there will be a region near the
central permanently damaged site where the damage prob-
abilities are near their equilibrium values but near the edge
of the system the damaged sites have not attained their
equilibrium values. Since some sites are damaged more
frequently than others one can define a partition function

Zq =
N∑
n=1

pqn (3)

where

pn =
fn∑N
n fn

(4)

and fn is the number of times site n is damaged for a
fixed number of timesteps t, the bar over the symbols in
(3) means average over separate realizations of the damage
cluster. The sum over n is a sum over sites of the lattice
with global scale L.

If there exists scaling

Zq(L) ∝ L−τ(q) (5)

one can define the generalized dimensions

Dq =
τ(q)

(q − 1)
· (6)

If Dq decreases with q we are dealing with multifractal
situation. Results of numerical simulation performed in [7]
indicate that the Dq is approximately constant for the
Ising model both for d = 2 and d = 3, i.e. situation seems
to be monofractal in these terms. There, however, exists
also scaling

Zq(t) ∝ t
−τ(q) (7)

with another τ(q)-function and the same numerical simu-
lation indicates that the new τ(q) is a nonlinear function
on q (consequently, the generalized dimensions Dq defined
with this new τ(q) is non-constant). To describe the new
situation quantitatively we use the constant specific heat
(CSH) approximation [2]. In this approximation

Dq = D∞ + c
ln q

(q − 1)
(8)

where c is the constant multifractal specific heat. Figure 1
shows Dq/d corresponding to the t-scaling (7) and ob-
tained in the numerical simulation of damage spreading
in the Ising model [7]. Axes in this Figure are chosen for
comparison with the CSH approximation (8). One can see
that there is good agreement (the straight line) between
the data and the CSH-approximation for both d = 2 and
d = 3 cases. Moreover, it follows from this Figure that
c/d ' const ' 1/2, i.e.

c '
d

2
(9)
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Fig. 1. Normalized generalized dimensions Dq/d against
ln(q)/(q − 1) for damage spreading in the Ising model. Data
(symbols) taken from [7] for t-scaling. Straight line is drawn
for comparison with the CSH-approximation (8).

for this model. Therefore the multifractal thermodynam-
ics of the damage spreading in the Ising model can
be interpreted as thermodynamics of a generalized ideal
monoatomic gas in the phase space with the Euclidean
dimension d.

B. Another interesting example of the multifractal
thermodynamics of the generalized ideal gas is multifrac-
tality of wave functions of mesoscopic systems with long-
range disorder at Anderson transition. In this case, how-
ever, we are dealing with the fractal phase space. It is
shown in paper [2] that the multifractal thermodynam-
ics of the wave functions (with short-range disorder) in
a vicinity of the Anderson transition can be character-
ized by the generalized dimensions spectrum (8). Now the
question is, whether the CSH-approximation is applicable
also to the Anderson model with long-range disorder. For
the long-range off-diagonal 3D disorder where the nondi-
agonal matrix elements V (R) falling off ∝ 1/R3 or slower
all states are delocalized [8,9] (in other dimensions, d, this
result can be extended replacing 1/R3 by 1/Rd). This de-
pendence of transition matrix elements is characteristic
for the dipole interaction between elastic defects in solids.
Such type of interaction between soft harmonic oscillators
leads to universal linear frequency dependence of the den-
sity of states above the boson peak in glasses [10]. Because
of the long-range correlations these delocalized states have
multifractal spatial structure causing anomalous diffusion
of excitation in the system.

In a recent paper [11] a numerical simulation of such
type of a system was performed. Off-diagonal disorder
was introduced as Vij = (±1)/|Ri − Rj |d. Here Ri are
Poisson-distributed random points in d dimensional space,
and the random sign ±1 provides for the average value
〈Vij〉 = 0 corresponding to the interaction of randomly
oriented electric or elastic dipoles. Figure 2 (adapted
from [11]) shows generalized dimensions spectra obtained
in this numerical simulation for the most extended eigen-
states in the spaces with different dimensions: d = 1, 2, 3.
The straight lines are drawn for comparison with the CSH-

Fig. 2. Normalized generalized dimensions Dq/d against
ln(q)/(q−1) for the most extended eigenstates. Data (symbols)
are taken from [11]. The straight lines are drawn for compari-
son with the CSH-approximation (8).

approximation (8). And again one can see from Figure 2
that c/d ' const. In this case, however,

c '
d

3
· (10)

One can approximate multifractal spectrum in this case
using the generalized ideal gas model with {m = 2, n = 3}
(see (2)).

The author is grateful to D. ben-Avraham for discussion,
to D. Stauffer for critical comments and suggestions, and to
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